(资料图片仅供参考)
1、1.不等式的基本性质: 性质1:如果a>b,b>c,那么a>c(不等式的传递性). 性质2:如果a>b,那么a+c>b+c(不等式的可加性). 性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d. 性质5:如果a>b>0,c>d>0,那么ac>bd. 性质6:如果a>b>0,n∈N,n>1,那么an>bn,且. 例1:判断下列命题的真假,并说明理由. 若a>b,c=d,则ac2>bd2;(假) 若,则a>b;(真) 若a>b且ab<0,则;(假) 若a若,则a>b;(真) 若|a|b2;(充要条件) 命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性. a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥) 说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备. 例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小. 说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想. 练习: 1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>) 2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>) 3.判断下列命题的真假,并说明理由. (1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真) (3)若a>b,则ac2>bc2;(假) (4)若,则a>b;(真) 若a>b,c>d,则a-d>b-c.(真).。
本文到此分享完毕,希望对大家有所帮助。
关键词:
相关的文章>>
热门搜索:
资讯
更多图说健康
更多主要有无精打采,没有精神,不思进[t7] 取;情绪不稳定、易发脾...
病人血压突然升高,并伴有恶心、呕吐、剧烈头痛、心慌甚至视线...
患者精神症状消失3个月(慢性复发患者精神症状消失6个月)以上,...
疏风解毒胶囊的作用与功效是什么?疏风解毒胶囊可以起到解毒利咽...
艾叶的功效与作用有哪些?1、散寒止痛艾叶为菊科蒿属植物艾的叶...
治疗白发的偏方有哪些?1 桑白皮30克,五倍子15克,青葙子60...
常见疾病
更多体育健身
更多智能手机是信息技术的一大重要技术之一,我们现在已经进入了智...
1、表达了作者对童贞年代的眷恋,也影射出对现实世界的不满,希望...
苹果AirPods耳机新专利:支持隔空手势交互,专利局,苹果公司,财务会计,
格隆汇8月31日丨创业集团控股02221HK公告张立辉因投放更多时间...
抄底资金还在继续买入股票ETF。8月31日,8月最后一个交易日,A...
金乡街道开展少儿书画创意展示活动大众网见习记者林智通通讯员...